The reverse motion illusion in random dot motion displays and implications for understanding development

Keywords: visual development, motion processing, motion coherence, individual differences, motion illusion, opposite-direction perception, 180-degree errors

Abstract

Across two independent developmental labs, we have been puzzled by the observation that a small proportion of our child and adult participants consistently report perceiving motion in the direction opposite to that presented in random dot motion displays, sometimes even when the motion is at 100% coherence. In this review, we first draw together existing reports of misperceptions of motion direction in random dot displays across observers in a small percentage of trials, before reporting evidence of consistent reverse motion perception in a minority of observers, including previously unreported observations from our own studies of visual development. We consider possible explanations for this reverse motion illusion, including motion induction, motion energy, correspondence noise and spatial undersampling. However, more work is required to understand the individual differences relating to this percept. We suggest that errors in perceived motion direction are likely to be more widespread than can be currently gleaned from the literature and explain why systematic study is needed, especially in children. Finally, we list some remaining open questions and call for collaborative efforts to document this phenomenon and stimulate future investigation.

Downloads

Download data is not yet available.

References


Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2(2), 284–299. doi: 10.1364/JOSAA.2.000284


Anstis, S. (1970). Phi movement as a subtraction process. Vision Research, 10, 1411–1430. doi: 10.1016/0042-6989(70)90092-1


Atkinson, J., King, J., Braddick, O., Nokes, L., Anker, S., & Braddick, F. (1997). A specific deficit of dorsal stream function in Williams’ syndrome. Neuroreport, 8(8), 1919–1922. doi: 10.1097/00001756-199705260-00025


Bae, G. Y., & Luck, S. J. (2018). Motion perception in 360 degrees. Journal of Vision, 18, 338. doi: 10.1167/18.10.338


Bae, G. Y., & Luck, S. J. (2019). Decoding motion direction using the topography of sustained ERPs and alpha oscillations. NeuroImage, 184, 242–255. doi: 10.1016/j.neuroimage.2018.09.029


Barbieri, R., Töpfer, F., Soch, J., Bogler, C., & Haynes, J. D. (2018). Feature-continuous motion judgements: Assessing different random dot motion displays. Journal of Vision, 18 (Vision Sciences Society annual meeting abstract), 668. doi: 10.1167/18.10.668


Barlow, H., & Tripathy, S. R. (1997). Correspondence noise and signal pooling in the detection of coherent visual motion. Journal of Neuroscience, 17(20), 7954–7966. doi: 10.1523/JNEUROSCI.17-20-07954.1997


Bex, P. J., & Dakin, S. C. (2002). Comparison of the spatial-frequency selectivity of local and global motion detectors. Journal of the Optical Society of America A, 19(4), 670–677. doi: 10.1364/JOSAA.19.000670


Blumenthal, E. J., Bosworth, R. G., & Dobkins, K. R. (2013). Fast development of global motion processing in human infants. Journal of Vision, 13(8), 1–13. doi: 10.1167/13.13.8


Braddick, O., Atkinson, J., Akshoomoff, N., Newman, E., Curley, L. B., Gonzalez, M. R., … Jernigan, T. (2017). Individual differences in children’s global motion sensitivity correlate with TBSS-based measures of the superior longitudinal fasciculus. Vision Research, 141, 145–156. doi: 10.1016/j.visres.2016.09.013


Braddick, O., Atkinson, J., Newman, E., Akshoomoff, N., Kuperman, J. M., Bartsch, H., … Jernigan, T. (2016). Global visual motion sensitivity: Associations with parietal area and children’s mathematical cognition. Journal of Cognitive Neuroscience, 28(12), 1897–1908. doi: 10.1162/jocn_a_01018


Braddick, O., Atkinson, J., & Wattam-Bell, J. (2003). Normal and anomalous development of visual motion processing: Motion coherence and ‘dorsal-stream vulnerability’. Neuropsychologia, 41(13), 1769–1784. doi: 10.1016/S0028-3932(03)00178-7


Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745–4765. doi: 10.1523/JNEUROSCI.12-12-04745.1992


Burr, D. C., Morrone, M. C., & Vaina, L. (1998). Large receptive fields for optic flow direction in humans. Vision Research, 38, 1731–1743. doi: 10.1016/S0042-6989(97)00346-5


Burr, D. C., & Santoro, L. (2001). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research, 41(15), 1891–1899. doi: 10.1016/S0042-6989(01)00072-4


Burr, D., & Thompson, P. (2011). Motion psychophysics: 1985–2010. Vision Research, 51(13), 1431–1456. doi: 10.1016/j.visres.2011.02.008


Challinor, K. L., & Mather, G. (2010). A motion-energy model predicts the direction discrimination and MAE duration of two-stroke apparent motion at high and low retinal illuminance. Vision Research, 50(12), 1109–1116. doi: 10.1016/j.visres.2010.04.002


Chetverikov, A., & Jehee, J. F. M. (2019). Activity in human visual areas reflects the precision of motion perception. Journal of Vision, 19(Vision Sciences Society annual meeting abstract), 166. doi: 10.1167/19.10.166c


Coletta, N. J., Williams, D. R., & Tiana, C. L. M. (1990). Consequences of spatial sampling for human motion perception. Vision Research, 30(11), 1631–1648. doi: 10.1016/0042-6989​(90)90149-F


Dakin, S. C., & Turnbull, P. R. K. (2016). Similar contrast sensitivity functions measured using psychophysics and optokinetic nystagmus. Scientific Reports, 6, 34514. doi: 10.1038/srep34514


Derrington, A. M., & Henning, G. B. (1987). Errors in direction-of-motion discrimination with complex stimuli. Vision Research, 27(1), 61–75. doi: 10.1016/0042-6989(87)90143-X


Edwards, V., Giaschi, D., Dougherty, R., Edgell, D., Bjornson, B., Lyons, C. & Douglas, R. (2004). Psychophysical indexes of temporal processing abnormalities in children with dyslexia. Developmental Neuropsychology, 25, 321–354. doi: 10.1207/s15326942dn2503_5


Giaschi, D., & Regan, D. (1997). The development of motion-defined figure-ground segregation in preschool and older children, using a letter-identification task. Optometry and Vision Science, 74, 761–767. doi: 10.1097/00006324-199709000-00024


Glasser, D. M., & Tadin, D. (2013). Reliable non-veridical perception of brief moving stimuli. Journal of Vision, 13(Vision Sciences Society annual meeting abstract), 764. doi: 10.1167/13.9.764


Glasser, D. M., Tadin, D., & Pack, C. C. (2014). Motion reversal reveals mechanisms of perceptual suppression. Journal of Vision, 14(Vision Sciences Society Annual Meeting Abstract), 472. doi: 10.1167/14.10.472


Green, M. L., & Pratte, M. S. (2020). Access to sensory uncertainty in global motion perception depends on the stimulus. Journal of Vision, 20(Vision Sciences Society Annual Meeting Abstract), 11, 1513. doi: 10.1167/jov.20.11.1513


Gunn, A., Cory, E., Atkinson, J., Braddick, O., Wattam-Bell, J., Guzzetta, A., & Cioni, G. (2002). Dorsal and ventral stream sensitivity in normal development and hemiplegia. Neuroreport, 13(6), 843–847. doi: 10.1097/00001756-200205070-00021


Hadad, B.S., Maurer, D., & Lewis, T. L. (2011). Long trajectory for the development of sensitivity to global and biological motion. Developmental Science, 14(6), 1330–1339. doi: 10.1111/j.1467-7687.2011.01078.x


Hayward, J., Truong, G., Partanen, M., & Giaschi, D. (2011). Effects of speed, age and amblyopia on the perception of motion-defined form. Vision Research, 51, 2216–2223. doi: 10.1016/j.visres.2011.08.023


Hwang, B. W., & Schütz, A. C. (2020). Idiosyncratic preferences in transparent motion and binocular rivalry are dissociable. Journal of Vision, 20(12), 3, 1–16. doi: 10.1167/jov.20.12.3


Manning, C., Charman, T., & Pellicano, E. (2013). Processing slow and fast motion in children with autism spectrum conditions. Autism Research, 6(6), 531–541. doi: 10.1002/aur.1309


Manning, C., Dakin, S. C., Tibber, M. S., & Pellicano, E. (2014). Averaging, not internal noise, limits the development of coherent motion processing. Developmental Cognitive Neuroscience, 10, 44–56. doi: 10.1016/j.dcn.2014.07.004


Manning, C., Kaneshiro, B., Kohler, P. J., Duta, M., Scerif, G., & Norcia, A. M. (2019). Neural dynamics underlying coherent motion perception in children and adults. Developmental Cognitive Neuroscience, 38, 100670. doi: 10.1016/j.dcn.2019.100670


Manning, C., Wagenmakers, E.-J., Norcia, A. M., Scerif, G., & Boehm, U. (2021). Perceptual decision-making in children: Age-related differences and EEG correlates. Computational Brain & Behavior, 4, 53–69. doi: 10.1007/s42113-020-00087-7


Meier, K. (2013). Resolving inconsistencies in the maturation of human global motion perception, Unpublished master’s thesis. University of British Columbia, Vancouver, BC, Canada.


Meier, K., & Giaschi, D. (2014). The maturation of global motion perception depends on the spatial and temporal offsets of the stimulus. Vision Research, 95, 61–67. doi: 10.1016/j.visres.2013.12.007


Meier, K., & Giaschi, D. (2017). Effect of spatial and temporal stimulus parameters on the maturation of global motion perception. Vision Research, 135, 1–9. doi: 10.1016/j.visres.2017.04.004


Meier, K., & Giaschi, D. (2019). The effect of stimulus area on global motion thresholds in children and adults. Vision, 3(10), 1–11. doi: 10.3390/vision3010010


Meier, K., Spering, M., & Giaschi, D. (2019). Fixation stability is not related to global motion deficits in amblyopia. Investigative Ophthalmology & Vision Science, 60(ARVO Annual Meeting Abstract), 1026.


Meier, K., Sum, B., & Giaschi, D. (2016). Global motion perception in children with amblyopia as a function of spatial and temporal stimulus parameters. Vision Research, 127, 18–27. doi: 10.1016/j.visres.2016.06.011


Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–263. doi: 10.1111/1469-7610.00018


Moreno-Bote, R., Shapiro, A., Rinzel, J., & Rubin, N. (2008). Bi-stable depth ordering of superimposed moving gratings. Journal of Vision, 8(7), 20, 1–13. doi: 10.1167/8.7.20


Morrone, M. C., Guzzetta, A., Tinelli, F., Tosetti, M., Del Viva, M., Montanaro, D., … Cioni, G. (2008). Inversion of perceived direction of motion caused by spatial undersampling in two children with periventricular leukomalacia. Journal of Cognitive Neuroscience, 20(6), 1094–1106. doi: 10.1162/jocn.2008.20061


Narasimhan, S., & Giaschi, D. (2012). The effect of dot speed and density on the development of global motion perception. Vision Research, 62, 102–107. doi: 10.1016/j.visres.2012.02.016


Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8, 2201–2211. doi: 10.1523/JNEUROSCI.08-06-02201.1988


Nishida, S. (2011). Advancement of motion psychophysics: Review 2001–2010. Journal of Vision, 11(5), 11, 1–53. doi: 10.1167/11.5.11


Nishida, S. Y., & Sato, T. (1992). Positive motion after-effect induced by bandpass-filtered random dot kinematograms. Vision Research, 32(9), 1635–1646. doi: 10.1016/0042-6989(92)90156-D


Parrish, E. E., Giaschi, D. E., Boden, C., & Dougherty, R. (2005). The maturation of form and motion perception in school age children. Vision Research, 45, 827–837. doi: 10.1016/j.visres.2004.10.005


Pellicano, E., & Gibson, L. Y. (2008). Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia. Neuropsychologia, 46(10), 2593–2596. doi: 10.1016/j.neuropsychologia.2008.04.008


Pilly, P. K., & Seitz, A. R. (2009). What a difference a parameter makes: A psychophysical comparison of random dot motion algorithms. Vision Research, 49(13), 1599–1612. doi: 10.1016/j.visres.2009.03.019


Qian, N., Andersen, R. A., & Adelson, E. H. (1994). Transparent motion perception as detection of unbalanced signals. III. Modeling. Journal of Neuroscience, 14(12), 7381–7392. doi: 10.1523/JNEUROSCI.14-12-07381.1994


Rideaux, R., & Welchman, A. E. (2020). But still it moves: Static image statistics underlie how we see motion. Journal of Neuroscience, 40(12), 2538–2552. doi: 10.1523/JNEUROSCI.2760-19.2020


Scase, M. O., Braddick, O. J., & Raymond, J. E. (1996). What is noise for the motion system? Vision Research, 36(16), 2579–2586. doi: 10.1016/0042-6989(95)00325-8


Schütz, A. C. (2011). Motion transparency: Depth ordering and smooth pursuit eye movements. Journal of Vision, 11(14), 21, 1–19. doi: 10.1167/11.14.21


Schütz, A. C., Braun, D. I., Movshon, A., & Gegenfurtner, K. R. (2010) Does the noise matter? Effects of different kinematogram types on smooth pursuit eye movements and perception. Journal of Vision, 10, 1–26. doi: 10.1167/10.13.26


Serrano-Pedraza, I., Goddard, P., & Derrington, A. M. (2007). Evidence for reciprocal antagonism between motion sensors tuned to coarse and fine features. Journal of Vision, 7, 12, 8. doi: 10.1167/7.12.8


Toffoli, L., Scerif, G., Snowling, M. J., Norcia, A., & Manning, C. (2021). Global motion evoked potentials in autistic and dyslexic children: A cross-syndrome approach. Cortex, 143, 109–126. doi: 10.1016/j.cortex.2021.06.018


Watamaniuk, S. N. J., & Sekuler, R. (1992). Temporal and spatial integration in dynamic random dot stimuli. Vision Research, 32(12), 2341–2347. doi: 10.1016/0042-6989(92)90097-3


Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Research, 24(1), 55–62. doi: 10.1016/0042-6989(84)90144-5


Yang, Y., & Blake, R. (1994). Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion. Nature, 371, 793–796. doi: 10.1038/371793a0
Published
2022-01-11
How to Cite
Manning C., Meier K., & Giaschi D. (2022). The reverse motion illusion in random dot motion displays and implications for understanding development. Journal of Illusion, 3. https://doi.org/10.47691/joi.v3.7916
Section
Review reports