Hybrid motion illusions as examples of perceptual conflict
Abstract
Shapiro and Hedjar (2019) proposed a shift in the definition of illusion, from ‘differences between perception and reality’ to ‘conflicts between possible constructions of reality’. This paper builds on this idea by presenting a series of motion hybrid images that juxtapose fine scale contrast (high spatial frequency content) with coarse scale contrast-generated motion (low spatial frequency content). As is the case for static hybrid images, under normal viewing conditions the fine scale contrast determines the perception of motion hybrid images; however, if the motion hybrid image is blurred or viewed from a distance, the perception is determined by the coarse scale contrast. The fine scale contrast therefore masks the perception of motion (and sometimes depth) produced by the coarser scale contrast. Since the unblurred movies contain both fine and coarse scale contrast information, but the blurred movies contain only coarse scale contrast information, cells in the brain that respond to low spatial frequencies should respond equally to both blurred and unblurred movies. Since people undoubtedly differ in the optics of their eyes and most likely in the neural processes that resolve conflict across scales, the paper suggests that motion hybrid images illustrate trade-offs between spatial scales that are important for understanding individual differences in perceptions of the natural world.
Downloads
References
Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America. A, Optics and Image Science, 2(2), 284–299. doi: 10.1364/JOSAA.2.000284
Adelson, E. H., & Bergen, J. R. (1991). The plenoptic function and the elements of early vision. In M Landy & J. A. Movshon (Eds.), Computational models of visual processing (Vol. 2, pp. 3–20). Cambridge, MA: MIT Press.
Anderson, B. L. (2020). Mid-level vision. Current Biology: CB, 30(3), R105–R109. doi: 10.1016/j.cub.2019.11.088
Anstis, S. M. (1970). Phi movement as a subtraction process. Vision Research, 10(12), 1411–1430. doi: 10.1016/0042-6989(70)90092-1
Anstis, S. M., & Rogers, B. J. (1975). Illusory reversal of visual depth and movement during changes of contrast. Vision Research, 15, 957–961.
Ayer, A. J. (1964 edition). The foundations of empirical knowledge. London. Macmillan and Company.
Blakeslee, B., & McCourt, M. E. (2013). Brightness induction magnitude declines with increasing distance from the inducing field edge. Vision Research, 78, 39–45. doi: 10.1016/j.visres.2012.12.007
Boring, E. G. (1942). Sensation and perception in the history of experimental psychology. Retrieved from https://psycnet.apa.org/record/1942-02580-000
Braddick, O. (2018). Illusion research: An infantile disorder? Perception, 47(8), 805–806. doi: 10.1177/0301006618774658
Brady, T. F., & Oliva, A. (2012). Spatial frequency integration during active perception: Perceptual hysteresis when an object recedes. Frontiers in Psychology, 3, 462. doi: 10.3389/fpsyg.2012.00462
Burge, J., Rodriguez-Lopez, V., & Dorronsoro, C. (2019). Monovision and the misperception of motion. Current Biology: CB, 29(15), 2586–2592. doi: 10.1016/j.cub.2019.06.070
Burnyeat, M. (1981). Conflicting appearances. Proceedings of the British Academy, Volume 65: 1979 (pp. 69–111).
Challinor, K. L., & Mather, G. (2010). A motion-energy model predicts the direction discrimination and MAE duration of two-stroke apparent motion at high and low retinal illuminance. Vision Research, 50(12), 1109–1116. doi: 10.1016/j.visres.2010.04.002
Crick, F. (1994). Astonishing hypothesis: The scientific search for the soul (Reprint edition). Scribner, New York.
Del Viva, M. M., & Morrone, M. C. (1998). Motion analysis by feature tracking. Vision Research, 38(22), 3633–3653. doi: 10.1016/S0042-6989(98)00022-4
Dixon, E. L., & Shapiro, A. G. (2017). Spatial filtering, color constancy, and the color-changing dress. Journal of Vision, 17(3), 7. doi: 10.1167/17.3.7
Elliott, S. L., Georgeson, M. A., & Webster, M. A. (2011). Response normalization and blur adaptation: Data and multi-scale model. Journal of Vision, 11(2). doi: 10.1167/11.2.7
Fermuller, C. (2017). Motion illusions in man and machine. In A. G. Shapiro & D. Todorovic (Eds.), The Oxford compendium of visual illusions (pp. 79–89). Oxford University Press, New York.
Flynn, O.J. (2016). Differentiation of motion mechanisms with perpetual motion illusions. Dissertation, American University, Washington, D.C.
Flynn, O. J., & Shapiro, A. G. (2018). The perpetual diamond: Contrast reversals along thin edges create the appearance of motion in objects. I-Perception, 9(6), 2041669518815708. doi: 10.1177/2041669518815708
Foa, M. (2015). Georges Seurat: The art of vision. Yale University Press, New Haven and London.
Gilad-Gutnick, S., & Sinha, P. (2017). The presidential illusion. In A. G. Shapiro & D. Todorovic (Eds.), The Oxford compendium of visual illusions (pp. 628–632). Oxford University Press, New York.
Gilchrist, A. (2015). Perception and the social psychology of ‘the dress’. Perception, 44(3), 229–231. doi: 10.1068/p4403ed
Gurnsey, R., & Biard, M. (2012). Eccentricity dependence of the curveball illusion. Canadian Journal of Experimental Psychology = Revue Canadienne de Psychologie Experimentale, 66(2), 144–152. doi: 10.1037/a0026989
Harmon, L. D., & Julesz, B. (1973). Masking in visual recognition: Effects of two-dimensional filtered noise. Science, 180(4091), 1194–1197. doi: 10.1126/science.180.4091.1194
Hawkins, J. (2021). A thousand brains: A new theory of intelligence. Basic Books, New York.
Henriksson, L., Hyvärinen, A., & Vanni, S. (2009). Representation of cross-frequency spatial phase relationships in human visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(45), 14342–14351. doi: 10.1523/JNEUROSCI.3136-09.2009
Hochberg, J. E. (1964). Perception. Prentice-Hall, Inc. Englewood Cliffs, NJ.
Hock, H. S., Schöner, G., & Gilroy, L. (2009). A counterchange mechanism for the perception of motion. Acta Psychologica, 132(1), 1–21. doi: 10.1016/j.actpsy.2009.06.006
Hoffman, D. D. (2010). Human vision as a reality engine. Washington, DC: Foundation for the Advancement of Behavioral and Brain Sciences. Retrieved from http://www.cogsci.uci.edu/~ddhoff/HoffmanFABBS.pdf
Hoffman, D. D. (2019). The case against reality: Why evolution hid the truth from our eyes (Illustrated ed.). W. W. Norton & Company, New York and London
Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic Bulletin & Review, 22(6), 1480–1506. doi: 10.3758/s13423-015-0890-8
James, W. (1890). The perception of reality. Principles of Psychology, 2, 283–324. doi: 10.1037/11059-005
Kitaoka, A. (2003). Rotating snake illusion. Akiyoshi’s Illusion Pages. Retrieved from http://www.ritsumei.ac.jp/~akitaoka/rotsnake.jpg
Kitaoka, A. (2017). The Fraser-Wilcox illusion and its extension. In A. G. Shapiro & D. Todorovic (Eds.), The Oxford compendium of visual illusions (pp. 500–511). Oxford University Press, New York.
Koenderink, J. (2017). ‘Visual illusions?’ In S. A. G. Todorovic (Eds.), Oxford compendium of visual illusions (pp. 119–38). Oxford University Press, New York.
Koenderink, J. J. (2010). Vision and information. In L. A. G. Van Tonder & D. Vishwanath (Ed.), Perception beyond inference ‘The information content of visual processes’ (pp. 345–390). MIT Press, Cambridge, MA.
Kwon, O. S., Tadin, D., & Knill, D. C. (2015). Unifying account of visual motion and position perception. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8142–8147. doi: 10.1073/pnas.1500361112
Lisi, M., & Cavanagh, P. (2015). Dissociation between the perceptual and saccadic localization of moving objects. Current Biology: CB, 25(19), 2535–2540. doi: 10.1016/j.cub.2015.08.021
Lu, Z. L., & Sperling, G. (2001). Three-systems theory of human visual motion perception: Review and update. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 18(9), 2331–2370. doi: 10.1364/JOSAA.18.002331
May, K. A., & Georgeson, M. A. (2007). Blurred edges look faint, and faint edges look sharp: The effect of a gradient threshold in a multi-scale edge coding model. Vision Research, 47(13), 1705–1720. doi: 10.1016/j.visres.2007.02.012
McCourt, M. E., & Blakeslee, B. (2017). Grating induction. In A. G. Shapiro & D. Todorovic (Eds.), The Oxford compendium of visual illusions (pp. 415–421). Oxford University Press, New York.
Morrone, M. C., & Burr, D. C. (1997). Capture and transparency in coarse quantized images. Vision Research, 37(18), 2609–2629. doi: 10.1016/S0042-6989(97)00052-7
Norcia, A. (2006). Coffer illusion. Retrieved from http://illusionoftheyear.com/2006/05/coffer-illusion/
Oliva, A., & Schyns, P. G. (2017). Hybrid image illusions. In A. G. Shapiro & D. Todorovic (Eds.), The Oxford compendium of visual illusions (pp. 763–766). Oxford University Press, New York.
Oliva, A., Torralba, A., & Schyns, P. G. (2006). Hybrid images. ACM Transactions on Graphics, 25(3), 527–532. doi: 10.1145/1141911.1141919
Pelli, D. G. (1999). Close encounters – An artist shows that size affects shape. Science, 285(5429), 844–846. doi: 10.1126/science.285.5429.844
Purves, D., Wojtach, W. T., & Lotto, R. B. (2017). Why the concept of ‘visual illusions’ is misleading. In A. G. Shapiro & D. Todorovic (Eds.), The Oxford compendium of visual illusions (pp. 139–143). Oxford University Press, New York.
Rogers, B. (2017). Where have all the illusions gone? A critique of the concept of illusion. In A. G. Shapiro & D. Todorovic (Eds.), The Oxford compendium of visual illusions (pp. 144–158). Oxford University Press, New York.
Rogers, B. (2019). Where have all the illusions gone? Perception, 48(3), 193–196. doi: 10.1177/0301006619828117
Rogers, B., Anstis, S., Ashida, H., & Kitaoka, A. (2019). Reversed phi and the ‘phenomenal phenomena’ revisited. I-Perception, 10(4), 2041669519856906. doi: 10.1177/2041669519856906
Seth, A. (2019). Our inner universes. Scientific American, 321(3), 40–47.
Shapiro, A. G. (2008). Separating color from color contrast. Journal of Vision, 8(1), 8.1–18. doi: 10.1167/8.1.8
Shapiro, A. G., Charles, J. P., & Shear-Heyman, M. (2005). Visual illusions based on single-field contrast asynchronies. Journal of Vision, 5(10), 764–782. doi: 10.1167/5.10.2
Shapiro, A. G., & Flynn, O. J. (2014). Hybrid motion and the integration of motion elements. Best Illusion of the Year Contest, 2014. Retrieved from http://illusionoftheyear.com/2014/05/hybrid-motion-and-the-integration-of-motion-elements/
Shapiro, A. G., & Hedjar, L. (2019). Color illusion as a spatial binding problem. Current Opinion in Behavioral Sciences, 30, 149–155. doi: 10.1016/j.cobeha.2019.08.004
Shapiro, A., Hedjar, L., Dixon, E., & Kitaoka, A. (2018). Kitaoka’s Tomato: Two Simple Explanations Based on Information in the Stimulus. I-Perception. https://doi.org/10.1177/2041669517749601
Shapiro, A. G., & Knight. E. (2007). Where has all the motion gone? Best Illusion of the Year, 2007. Retrieved from http://illusionoftheyear.com/2007/05/where-has-all-the-motion-gone/
Shapiro, A. G., & Knight, E. (2008). Spatial and temporal influences on the contrast gauge. Vision Research, 48(26), 2642–2648. doi: 10.1016/j.visres.2008.06.027
Shapiro, A. G., Knight, E. J., & Lu, Z.-L. (2011). A first- and second-order motion energy analysis of peripheral motion illusions leads to further evidence of ‘feature blur’ in peripheral vision. PLoS One, 6(4), e18719. doi: 10.1371/journal.pone.0018719
Shapiro, A. G., & LoPrete, A. (2020). Helix rotation: Luminance contrast controls the shift from two-dimensional to three-dimensional perception. JOSA A, 37(4), A262–A270. doi: 10.1364/JOSAA.382373
Shapiro, A., Lu, Z.-L., Huang, C.-B., Knight, E., & Ennis, R. (2010). Transitions between central and peripheral vision create spatial/temporal distortions: a hypothesis concerning the perceived break of the curveball. PLoS One, 5(10), e13296. doi: 10.1371/journal.pone.0013296
Shapley, R., Nunez, V., & Gordon, J. (2019). Cortical double-opponent cells and human color perception. Current Opinion in Behavioral Sciences, 30, 1–7. doi: 10.1016/j.cobeha.2019.04.001
Todorović, D. (2018). In defence of illusions: A reply to Braddick (2018) [Review of In defence of illusions: A reply to Braddick (2018)]. Perception, 47(9), 905–908.
Todorović, D. (2020). What are visual illusions? Perception, 49(11), 1128–1199. doi: 10.1177/0301006620962279
Tse, P. U., & Hsieh, P.-J. (2006). The infinite regress illusion reveals faulty integration of local and global motion signals. Vision Research, 46(22), 3881–3885. doi: 10.1016/j.visres.2006.06.010
Van Buren, B., & Scholl, B. J. (2018). Visual illusions as a tool for dissociating seeing from thinking: A reply to Braddick (2018). Perception, 47(10–11), 999–1001. doi: 10.1177/0301006618796348
Vogelsang, L., Gilad-Gutnick, S., Ehrenberg, E., Yonas, A., Diamond, S., Held, R., & Sinha, P. (2018). Potential downside of high initial visual acuity. Proceedings of the National Academy of Sciences of the United States of America, 115(44), 11333–11338. doi: 10.1073/pnas.1800901115
Wade, N. (2017). Hidden images. In A. G. Shapiro & D. Todorovic (Eds.), The Oxford compendium of visual illusions (pp. 774–782). Oxford University Press, New York.
Watt, R. J., & Morgan, M. J. (1985). A theory of the primitive spatial code in human vision. Vision Research, 25(11), 1661–1674. doi: 10.1016/0042-6989(85)90138-5
Webster, M. A., Georgeson, M. A., & Webster, S. M. (2002). Neural adjustments to image blur. Nature Neuroscience, 5(9), 839–840. doi: 10.1038/nn906
Westphal, J. (2005). Conflicting appearances, necessity and the irreducibility of propositions about colours. Proceedings of the Aristotelian Society, 105(2), 219–235. doi: 10.1111/j.0066-7373.2004.00112.x
Whittle, P. (2003). Contrast colours. In R. Mausfeld (Ed.), Colour perception: Mind and the physical world (Vol. 522, pp. 115–138). Oxford University Press, Oxford.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to Journal of Illusion.